ADA PINPOINT TOPIC PACKS

- (1)Sine, Cosine Rules and Area of Triangles (11 Qns)
- (2) Combined Sine and Cosine Rules (0 Qns)

50_to_100_Percent_Pinpoint_AI_Pack

Time Allocation = 57mins, Max = 50 Marks

Calculated Grade Boundaries:

Grade	Marks
5-	4
5	7
5- 5 5+ 6-	10
6-	14
6	17
6+ 7-	20
7-	24
7	27 30
7+	30
8-	34
8	37
8+ 9- 9	40
9-	44
9	47
9+	50

Question 1 (AO1): 49% of students got this right (5 marks)

17.

In the triangle XYZ

$$XY = 8.7 \text{ cm},$$

 $YZ = 11.6 \text{ cm},$
Angle $XYZ = 52^{\circ}$

(a) Work out the area of triangle *XYZ*. Give your answer correct to 3 significant figures.

 cm^2
(2)

(b) Work out the length of *XZ*. Give your answer correct to 3 significant figures.

Question 2 (AO2): 40% of students got this right (4 marks)

19. Here is a triangle ABC.

Diagram NOT accurately drawn

AC = 90 m. BC = 60 m.Angle $ACB = 130^{\circ}.$

Calculate the perimeter of the triangle. Give your answer correct to one decimal place.

•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	0	•	•		•	•	•	•		•	•		•	•	•	•			•	•		•	,		•	•	•		1			1
												((,		I		1	())	1	t	•	8	ı	l	l		4	/	1		ı	1	ľ	1	l	6	1	l.	1	ľ	•	k	ζ		S))

Question 3 (AO2): 31% of students got this right (4 marks)

10. A circular clock face, centre *O*, has a minute hand *OA* and an hour hand *OB*.

OA = 10 cm.

OB = 7 cm.

Calculate the length of *AB* when the hands show 5 o'clock. Give your answer correct to 3 significant figures.

Diagram **NOT** accurately drawn

Question 4 (AO1): 28% of students got this right (5 marks)

11. The diagram shows a triangle *ABC*.

- (a) Work out the size of angle *A*. Give your answer correct to 1 decimal place.
- (b) Work out the area of triangle *ABC*. Give your answer correct to 1 decimal place.

Question 5 (AO1): 26% of students got this right (4 marks)

20.

Work out the area of triangle *ABC*. Give your answer correct to 3 significant figures.

..... m²
(Total 4 marks)

Question 6 (AO3): 21% of students got this right (5 marks)

17.

Diagram **NOT** accurately drawn

There is a coastguard station at point A and at point B.

B is due East of A.

The distance from A to B is 12 km.

There is a rowing boat at point R. R is on a bearing of 160° from A.

R is on a bearing of 220° from B.

There is a speedboat at point T.

T is 5 km due South of A.

Work out the shortest distance from T to R.

Give your answer correct to 1 decimal place.

You must show all your working.

Question 7 (AO3): 16% of students got this right (5 marks)

24.

The area of triangle ABC is 42 cm²

Find the length of *AB*. Give your answer correct to 3 significant figures.

Question 8 (AO3): 13% of students got this right (5 marks)

15

The area of triangle ABC is $6\sqrt{2}$ m².

Calculate the value of x.

Give your answer correct to 3 significant figures.

(Total for Question 15 is 5 marks)

Question 9 (AO3): 10% of students got this right (5 marks)

21

ABC is a triangle. D is a point on AB.

Work out the area of triangle *BCD*. Give your answer correct to 3 significant figures.

Question 10 (AO2): 5% of students got this right (3 marks)

21 The diagram shows an acute-angled triangle ABC.

Prove that area of triangle $ABC = \frac{1}{2}ab \sin C$

Question 11 (AO3): (No Calc) 3% of students got this right (5 marks)

22 The diagram shows a hexagon ABCDEF.

ABEF and CBED are congruent parallelograms where AB = BC = x cm. P is the point on AF and Q is the point on CD such that BP = BQ = 10 cm.

Given that angle $ABC = 30^{\circ}$,

prove that
$$\cos PBQ = 1 - \frac{(2 - \sqrt{3})}{200} x^2$$

(Total for Question 22 is 5 marks)

Answers to Qn 1 (AO1): 49% of students got this right

17.	(a)	$\frac{1}{2} \times 11.6 \times 8.7 \times \sin 52^{\circ}$	39.8	2	M1 $\frac{1}{2} \times 11.6 \times 8.7 \times \sin 52^{\circ}$ or complete method to find area using trig and/or Pythagoras and $\frac{1}{2}$ base × height
					A1 39.75 – 39.8
	(b)	XZ^2 = 8.7 ² + 11.6 ² - 2 × 8.7 ×	9.27	3	M1 $8.7^2 + 11.6^2 - 2 \times 8.7 \times 11.6 \times \cos 52^\circ$
		$11.6 \times \cos 52^{\circ}$			M1 for correct order of evaluation or 85.985
		= 85.985			A1 answer in the range 9.27 – 9.275

Answers to Qn 2 (AO2): 40% of students got this right

19.	$c^{2} = 60^{2} + 90^{2} - 2 \times 60 \times 90 \times \cos 130^{\circ}$	286.5	4	M1 for substituting values correctly into cosine rule formula e.g. $60^2 + 90^2 - 2 \times 60 \times 90 \times \cos 130^\circ$
	$c^2 = 3600 + 8100 -$			M1 for correct order of evaluation
	$10\ 800 \times -0.6427876$			A1 for finding value of missing side in range 136 to 137 A1 for
	$c^2 = 11\ 700 + 6942.106$			answer in range 286 to 287
	$c^2 = 18642.106$			
	$c = \sqrt{18642.106} =$			
	136.536			
	Perimeter = 60 + 90 + 136.536			

Answers to Qn 3 (AO2): 31% of students got this right

10.	5 x (360	÷ 12) (= 150)	16.4	4	M1	Angle AOB.	
	$(AB^2 =) 1$ $7 \times \cos ($	$0^2 + 7^2 - 2 \times 10 \times $ '150")			M1	Accept the use of the cosine rule with any angle but sides (10 and 7) must be in correct places.	
	$(AB^2 =)$	0 ("150")			A1	(awrt) 270	
	$(AB^2 =) 2$	0 cos ("150") 270.24			A1	(awrt) 16.4	

Answers to Qn 4 (AO1): 28% of students got this right

Que	stion	Working	Answer	Mark	Notes
11	(a)		104.5°	3	M1 for substitution into the cosine rule e.g.
					$3.6^2 = 1.8^2 + 2.7^2 - 2 \times 1.8 \times 2.7 \times \cos A$
					M1 for $\cos A = \left(\frac{1.8^2 + 2.7^2 - 3.6^2}{2 \times 1.8 \times 2.7}\right)$
					$\left[= \left(\frac{3.24 + 7.29 - 12.96}{9.72} \right) = (-0.25) \right]$
					A1 for 104.47
	(b)		2.4	2	M1 (ft) for $\frac{1}{2} \times 1.8 \times 2.7 \times \sin(a)$
					A1 for an answer in the range 2.3 to 2.4 or ft from their (a) if supported by correct working.

Answers to Qn 5 (AO1): 26% of students got this right

20.	$\frac{\sin A}{36} = \frac{\sin 48}{57}$	4	M1 or $\frac{36}{\sin A} = \frac{57}{\sin 48}$
	$A = \sin^{-1}\left(\frac{\sin 48}{57} \times 36\right) \text{ or }$		M1 dep
	A in range 27.9 – 28		
	$\frac{1}{2} \times 57 \times$		M1 dep on the first M1
	36 sin (180 – 48 – "28") (= 995.49)		A1
			or $\frac{1}{2} \times 57 \times 36 \sin (48)$ with AC in range 74 – 74.5
			or AC from a correct method

Answers to Qn 6 (AO3): 21% of students got this right

17.	6.2	5	M1 for a method to find an angle
			RAB = 70, ABR = 50, BRA = 60 or TAR = 20
			M1 for substitution into sine formula $\frac{AR}{\sin"50"} = \frac{12}{\sin"60"}$
			M1 for use of sine rule to find AR, $AR = \frac{12}{\sin ''60''} \times \sin ''50''$
			(= 10.61)
			M1 for substitution into cosine formula
			$TR^2 = 5^2 + \text{``}10.61\text{'`'}^2 - 2 \times 5 \times \text{``}10.61\text{''} \times \cos 20 \ (= 37.92)$
			A1 for 6.15 – 6.2

Answers to Qn 7 (AO3): 16% of students got this right

24	12.3	P1 P1	for process to start, e.g. correct substitution into $\frac{1}{2}ab \sin C$, e.g. $0.5 \times 7 \times BC \times \sin 70 = 42$ (dep on P1) for process to rearrange to find BC , e.g. $BC = \frac{42}{0.5 \times 7 \times \sin 70}$ oe (=12.77013327)
		P1	(dep on first P1) for process to find AB , e.g. $AB^2 = 72 + "BC"^2 - 2 \times 7 \times "BC" \times \cos 70$
		P1 A1	for correct order of operations or 150.929(30436946) for answer in range 12.28 – 12.3

Answers to Qn 8 (AO3): 13% of students got this right

Question 15 (Total 5 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
	$\frac{1}{2}(x+3)(2x-1)\sin 45 = 6\sqrt{2}$	P1	This mark is given for setting up an expression for the area in the form $\frac{1}{2}ab \sin C$
	$\frac{1}{2}(2x^2 - 5x + 3)\sin 45 = 6\sqrt{2}$	P1	This mark is given for expanding the brackets in the expression to form an equation
	$\frac{1}{2}(2x^2 - 5x + 3) \frac{1}{\sqrt{2}} = 6\sqrt{2}$ $2x^2 - 5x + 3 = 24$	P1	This mark is given for a process to set up the equation and rearrange to the form $ax^2 + bx + c + d$
	$2x^{2} - 5x - 27 = 0$ $x = \frac{-5 \pm \sqrt{5^{2} - 4 \times 2 \times -27}}{4}$	P1	This mark is given for a substitution into the quadratic formula
	2.63	A1	This mark is given for the correct answer only

Answers to Qn 9 (AO3): 10% of students got this right

Paper 1MA1	: 3H		
Question	Working	Answer	Notes
21	, , , , , , , , , , , , , , , , , , ,	10.4	P1 starts process by using cosine rule to find CD eg $(CD)^2 = 4.9^2 + 3.8^2 - 2 \times 4.9 \times 3.8 \times \cos 80$ (= 31.98) P1 uses sine rule to find angle ACD or angle ADC eg $\frac{\sin C}{3.8} = \frac{\sin 80}{5.655'}$ or $\frac{\sin D}{4.9} = \frac{\sin 80}{5.655'}$ P1 uses sine rule to find BC or BD eg $\frac{BD}{\sin 25} = \frac{5.655'}{\sin^2 33.6'}$ P1 process to find area eg $1/2 \ ab \sin C$ A1 for $10.4 \ to \ 10.43$

Answers to Qn 10 (AO2): 5% of students got this right

Question	Working	Answer	Mark	Notes
21		Shown	M1	for use of sine to find height, e.g. $\sin C = \frac{h}{b}$
			M1	for use of expression for the height of the triangle,
				e.g. area = $\frac{1}{2}$ × base × height = $\frac{1}{2}$ $ab\sin C$
			C1	for complete proof
	Question Order Cre	ated by Pinpoint I	Learning	s Automatic Differentiation Algorithmr

Answers to Qn 11 (AO3): (No Calc) 3% of students got this right

Question 22 (Total 2 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
	$\cos 30^\circ = \frac{\sqrt{3}}{2}$	B1	This mark is given for a correct statement about the value of cos 30° (seen anywhere)
	$PQ^{2} = 10^{2} + 10^{2} - 2 \times 10 \times 10 \times \cos PBQ$ $= 200 - 200 \cos PBQ$	M1	This mark is given for applying the cosine rule to find an expression for PQ^2
	$AC^{2} = x^{2} + x^{2} - 2 \times x \times x \times \cos 30^{\circ}$ $= 2x^{2} - 2x^{2} \frac{\sqrt{3}}{2}$	M1	This mark is given for applying the cosine rule to find an expression for AC^2
	$= 2x^{2}(1 - \frac{\sqrt{3}}{2})$ $= (2 - \sqrt{3})x^{2}$		
	$= (2 - \sqrt{3})x^{-}$		
	$\cos PBQ = \frac{200 - PQ^2}{200} = 1 - \frac{PQ^2}{200}$	M1	This mark is given for rearranging to find an expression for cos <i>PBQ</i>
	$\cos PBQ = 1 - \frac{PQ^2}{200} = 1 - \frac{AC^2}{200}$	A1	This mark is given for a conclusion of proof with all working seen
	$=1-\frac{(2-\sqrt{3})}{200}x^2$		